FGV-SP Economia Manhã 2013

Um cilindro circular reto de base contida em um plano α foi seccionado por um plano β, formando 30° com α, gerando um tronco de cilindro. Sabe-se que BD e CE são, respectivamente, eixo maior da elipse de centro P contida em β, e raio da circunferência de centro Q contida em α. Os pontos A, B, P e D são colineares e estão em β, e os pontos A, C, Q e E são colineares e estão em α.

Sendo \(BC=1\ m\ e\ CQ=\sqrt{3}\ m,\), o menor caminho pela superfície lateral do tronco ligando os pontos C e D mede, em metros,

a

\(3\sqrt{1^{ }+3\pi^2}\)

b

\(3\sqrt{3\pi}\)

c

\(3\sqrt{1^{ }+\pi^2}\)

d

\(\sqrt{9^{ }+3\pi^2}\)

e

\(\sqrt{9^{ }+\pi^2}\)

Ver resposta
Ver resposta
Resposta
D
Resolução
Assine a aio para ter acesso a esta e muitas outras resoluções
Mais de 250.000 questões com resoluções e dados exclusivos disponíveis para alunos aio.
Tudo com nota TRI em tempo real
Saiba mais
Esta resolução não é pública. Assine a aio para ter acesso a essa resolução e muito mais: Tenha acesso a simulados reduzidos, mais de 200.000 questões, orientação personalizada, video aulas, correção de redações e uma equipe sempre disposta a te ajudar. Tudo isso com acompanhamento TRI em tempo real.
Dicas
expand_more
expand_less
Dicas sobre como resolver essa questão
Erros Comuns
expand_more
expand_less
Alguns erros comuns que estudantes podem cometer ao resolver esta questão
Conceitos chave
Conceitos chave sobre essa questão, que pode te ajudar a resolver questões similares
Estratégia de resolução
Uma estratégia sobre a forma apropriada de se chegar a resposta correta
Garanta sua vaga dos sonhos no Enem com IA e o maior banco de questões!
Depoimentos
Por que os estudantes escolhem a aio
Tom
Formando em Medicina
A AIO foi essencial na minha preparação porque me auxiliou a pular etapas e estudar aquilo que eu realmente precisava no momento. Eu gostava muito de ter uma ideia de qual era a minha nota TRI, pois com isso eu ficava por dentro se estava evoluindo ou não
Sarah
Formanda em Medicina
Neste ano da minha aprovação, a AIO foi a forma perfeita de eu entender meus pontos fortes e fracos, melhorar minha estratégia de prova e, alcançar uma nota excepcional que me permitiu realizar meu objetivo na universidade dos meus sonhos. Só tenho a agradecer à AIO ... pois com certeza não conseguiria sozinha.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar