Calculadora TRI AIO Enem 2024: A mais confiável
Veja o gabarito e a correção TRI AIO Enem 2024 e estime a sua nota já após a prova.

UFRGS HIST MAT 2016

Na figura abaixo, encontram-se representados o hexágono regular ABCDEF, seis quadrados com um de seus lados coincidindo com um lado do hexágono e um círculo que passa por vértices dos quadrados.

Se o lado do hexágono é 1, então a área do círculo é

a

\(\pi+\sqrt{3}\)

b

\(\pi\sqrt{3}\)

c

\(\pi\left(2+\sqrt{3}\right)\)

d

\(2\pi\sqrt{3}\)

e

\(\pi\left(1+\sqrt{3}\right)\)

Ver resposta
Ver resposta
Resposta
C
Resolução
Assine a aio para ter acesso a esta e muitas outras resoluções
Mais de 250.000 questões com resoluções e dados exclusivos disponíveis para alunos aio.
Tudo com nota TRI em tempo real
Saiba mais
Esta resolução não é pública. Assine a aio para ter acesso a essa resolução e muito mais: Tenha acesso a simulados reduzidos, mais de 200.000 questões, orientação personalizada, video aulas, correção de redações e uma equipe sempre disposta a te ajudar. Tudo isso com acompanhamento TRI em tempo real.
Dicas
expand_more
expand_less
Dicas sobre como resolver essa questão
Erros Comuns
expand_more
expand_less
Alguns erros comuns que estudantes podem cometer ao resolver esta questão
Conceitos chave
Conceitos chave sobre essa questão, que pode te ajudar a resolver questões similares
Estratégia de resolução
Uma estratégia sobre a forma apropriada de se chegar a resposta correta
Garanta sua vaga dos sonhos no Enem com IA e o maior banco de questões!
Depoimentos
Por que os estudantes escolhem a aio
Tom
Formando em Medicina
A AIO foi essencial na minha preparação porque me auxiliou a pular etapas e estudar aquilo que eu realmente precisava no momento. Eu gostava muito de ter uma ideia de qual era a minha nota TRI, pois com isso eu ficava por dentro se estava evoluindo ou não
Sarah
Formanda em Medicina
Neste ano da minha aprovação, a AIO foi a forma perfeita de eu entender meus pontos fortes e fracos, melhorar minha estratégia de prova e, alcançar uma nota excepcional que me permitiu realizar meu objetivo na universidade dos meus sonhos. Só tenho a agradecer à AIO ... pois com certeza não conseguiria sozinha.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar